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Abstract. General conditions are determined under which a decomposable representation of 
a group admits invertible C-matrices. Applying these results, p C-matrices admitted by the 
decamposable representations of the oahaehronous proper Lorentz ~IOUD SO(3, 1) are obtained 
and the representations are classified into three reality types. 

1. Introduction 

Continuing the theme of our previous paper (I) (Gopala Rao et al 1994), where we 
considered the reality classification of the irreps of the group SO(3, 1). we take up here 
the problem of classifying the decomposable (or completely reducible) representations of 
SO(3, 1) into the three reality types. The solution to this problem cannot be obtained by 
a trivial direct summation of the corresponding results of the irreducible case as the direct 

the same type. 
In the following section, we obtain the general conditions under which a decomposable 

representation of an arbitrary group r admits invertible C-matrices. We also extend 
certain results of I concerning the potential reality of an irrep to the caSe of decomposable 
representations. 

In section 3, we cons’uuct the invertible C-matrices associated with the decomposable 
representations of SO(3, 1) and classify them into the three reality types. 

~ ~ 

~ sum of irreps belonging to a given reality type need not necessarily be a representation of 

2. General considerations 

Since we are interested in a discussion of the existence of a C-matrix associated with a 
decomposable representation D of a group r, we work in a basis in which D decouples as 
a direct sum of the irreps Dt, t = 1,2, . . . , n. We also assume that the constituent irreps 
Dt of D have been rearranged such.that D = D I ~ ~  e3 41 e3 4, where DIE, Dn and DI are, 
respectively, the direct sums of irreps of the third, second, and first kinds only. We partition 
the C-matrix associated with D into the block form [ cll c12 c13 

c =  c21 cu cz3 ... 
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where a typical block matrix C,, has as many rows as the dimension of the irrep D, and 
as many columns as the dimension of the irrep D,,. Then, on equating the corresponding 
sub-blocks in the defining relation CD(g) = D"(g)C, g E r, of the C-matrices admitted by 
D, we obtain the following equation: 

A V Gopala Rao and B S Narahori 

C,eD,.(g) = D;(g)C,,, (#,#'not dummies) (2.1) 

which is valid for every g E r. By the generalized Schur lemma (see, for example, Coleman, 
(1968)), any non-zero block Ctt, must necessarily be invertible. As a consequence of this 
result and the fact that two equivalent irreps must belong to the same reality type, it follows 
that C,t. = 0 if D, and D,, belong to different reality types. Therefore, the C-matrix 
admitted by D = 4 1 1  @ Dn @ DI must necessarily be of the form C = C, f3 Cn @ CJ, 
where the block-matrices C ~ I ,  Cu and C, are the C-matrices admitted by the blocks 41, 
DII and DI, respectively. Second, a diagonal block C ,  can only be a zero-matrix when 
D, is essentially complex, while an invertible block matrix C,, exists when D, is either 
potentially real or pseudo-real. On substituting for D,,(g), from equation (2.1) in the equation 
C,&(g) = D;(g)C,Jr, and applying the Schur lemma, we also note that, whenever C,t. is 
invertible, 

c,,, = ac;;;' (2.2) 

where a! is an arbitrary scalar. 
As the blocks CI and C, can always be chosen so as to possess inverses (for example, 

by retaining only their diagonal blocks C,,), it is clear that the C-matrix is invertible if the 
block CIII is invertible. A little reasoning leads to the following results (see the appendix 
for a proof). 

Theorem I .  A decomposable representation D of a group r admits invertible C-matrices 
if, and only if, every essentially complex irrep Di occurs in D a finite number of times and 
the multiplicities of Di and DT are equal. 

In applying this theorem, i.e. in'counting irreps, the multiplicity of an irrep Dj in D is 
to be taken as k if Di, and representations equivalent to Dj, appear together k times in D. 

It is interesting to note the following results, which are in sharp contrast to the 
corresponding results of the irreducible case. 

(i) Although every scalar multiple of a given C-matrix is also a C-matrix, all the C- 
matrices associated with a completely reducible representation are not necessarily scalar 
multiples of each other. 

(ii) A C-matrix associated with a decomposable representation need not satisfy any of 
the two relations CC' = &E. 

We support the above remarks by an example. Consider the two-component 
representation D = DI f3 D1, where DI is an irreducible pseudo-real representatidn of 
SO(3, 1). Then, (see I) the irrep DI admits a real C-matrix satisfying C: = -E, and it is 
easily checked that 

is a C-matrix associated with D, where a!], u2, a3 and a!4 are arbitrary real numbers. Note 
that this C satisfies CC" = E when a!, = a!d = 0, a!* = -a!3 = 1, and CC* = -E when 
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a1 = cr4 = 1, = a3 = 0. However, with a-2 = a3 = 0, ai # a4, it satisfies neither 
CC' = E nor CC* = -E. . 

Similarly, we make the following observations on the problem of further sorting the 
completely reducible representations possessing C-matrices into first and second kinds. 

(1) As in the case of imps (I), the existence of the C-manix which can be axpkssed 
in the form C = T*T-' is the necessary and sufficient condition for the potential ;reality of 
a decomposable representation. 

(2) If a decomposable representation D is potentially real, there must necessarily exist 
at least one C-matrix which satisfies CC* = E. 

(3) If none of the C-matrices admitted by a decomposable representation D satisfies the 
relation CC' = E, then D must belong to the second kind. 

(4) In expressing a C-matrix satisfying the relation CC* = E in the form C = T'T-I, 
we may note that all the results which are valid for an i m p  are also valid for a decomposable 
representation. 

(5) If two irreps D, and Dr,, of a group r satisfy equation (2.1) with an appropriate 
invertible matrix C,,,, then the direct sum representation D, @ D,, = D, @ (C;;fD:C,,) is 
equivalent to a real representation. 

To see this, it is sufficient to note that with 

T = L [ Y ]  T - i = . - ! - [ q ]  
A c;,' ic;,! 4% iE -iCrr, 

T-'(Dr @ De)T is real. (Note that this T is unitary whenever C,, is unitary). Therefore, 
it follows in particular (i.e. if Crp = E) that Dr @ D: is equivalent to a real representation 
for all representations D,. Combining this result with the fact that a representation D and 
its complex conjugate D* must belong to the same reality type (it is easy to check this), 
we observe that when D and D* are essentially complex or pseudo-real, their direct sum is 
potentially real thus corroborating the r e m a b  made in the first paragraph of section 1. As 
an immediate consequence of this observation, we have (i) a direct sum representation Dn 
consisting of only~pseudo-real irreps Di (for which, by definition, Di and D; are equivalent) 
is potentially real if the multiplicity of every irrep Di appearing in Dn is even, and (ii) a 
direct sum representation DUI consisting of only essentially complex irreps is potentially real 
if each irrep Di appearing in DI; occurs such that the multiplicities of Di and Df are equal. 
Combining the above two results (i) and (ii) and the result that a direct sum representation 
DI of purely potentially real irreps is certainly potential real with theorem 1, we arrive at 
the following sufficient condition for the potential reality of a decomposable representation 
D = Diii @ Dn @ Dr. 

Theorem 2. A sufficient condition for the potential reality of a decomposable representation 
D of a group r is that each essentially complex irreducible component Di of D occurs such 
that the multiplicities of Dt and Df are equal and every pseudo-real irreducible component 
of D occurs in D with even multiplicity. 

(6) Lastly, as in the case of imps, we  can^ constnict any one of the three operators, 
namely the C-matrix C, the bilinear meaic G and the sesquilinear metric A, from the other 
two by making use of the relation C = aA*-'G, where 01 is any constant scalar (see I). 

3. The reality classification of the decomposable representations of SO(3,I) 

To determine the invertible C-matrices associated with a given decomposable representation 
of the group SO(3, I), we 'make use of theorem 1. For this purpose, it is necessary 'to identify 
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the complex conjugate irrep D* of a given irrep D of SO(3,l). Recalling that every imp  
of SO(3.1) is characterized (Gelfand et al 1963) by a unique pair of invariant parametas 
(jo, c), we note that the irrep D* is identified once its parameter pair (j& c’) is determined 
in relation to the parameter pair (io, c) of D. However, since the parameters ji and &of D* 
do not change under a similarity transformation, the problem of finding ji and c‘ is solved 
if we determine the general conditions under which the intertwining relation 
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ID(jo, c)l*K = K W &  c’) (3.1) 

is satisfied with an invertible matrix K. Now if (&, 6,) and (A&, 6;). CL = 1,2,3, are the 
infinitesimal generators (Gelfand et al 1963) of D(j0, c) and D(j6, c’), respectively, then 
equation (3.1) would require 

AEK = KA& BEK = KB& (3.2) 

where we have used the fact that the generators of D* are the complex conjugates of the 
generators of D. In view of the commutation relations (see Gelfand et a1 1963) satisfied 
by the generators (&, Ba), not all the six equations in (3.2) are really independent. Using 
the expressions given in Gelfand et al (1963) for the generators (A:, BE) and (A&, B&) and 
solving the algebraically independent relations contained in equation (3.2) (see Narahari 
(1986), for details), it is not difficult to see that an invertible matrix K exists if, and only if, 
j o  = j ;  and c‘ = -c*. Thus, it follows that the complex conjugate irrep [D(jo, c)]* of an 
irrep D(j0, c) characterized by the parameter pair (jo, c) has parameters (io, -c*). Now, 
invoking theorem 1 we arrive at the following theorem. 

Theorem 3. Let D(j0.c) E NU, U NU2 be an essentially complex irrep of the 
orthoduonous proper Lorentz goup SO(3,l) (see I). Then the decomposable representation 
D of SO(3.1) containing DGo, c) admits an invertible C-matrix if, and only if, the irrep 
D(jo. -c*) occurs in D and has the same multiplicity as that of the essentially complex 
irrep D(j0, c). 

Using this theorem, we can decide whether a given decomposable representation of 
SO(3, 1) is essentially complex or not. In order to sort the decomposable representations 
possessing C-matrices further into potentially real and pseudo-real representations, we 
establish the following necessary aid sufficient condition for potential reality of a 
decomposable representation of SO(3, 1). 

Theorem 4. Among the decomposable representations of SO(3,l) which admit invertible 
C-matrices, those, and only those, representations in which the multiplicity of every 
constituent pseudo-real irrep is even are potentially real (while all others are pseudo-real). 

In view of theorem 2, proved in section 2, it remains only to establish that the 
above theorem provides a necessary condition for the potential reality of the decomposable 
representations of SO(3, 1). With the usual notation, let D = DIII @ D11 @ DI be a potentially 
real decomposable representation of a group r. Then, by observation (2) made at the end of 
section 2, it follows that D admits at least one invertible C-matrix which satisfies CC’ = E. 
However, since every C-matrix associated with D must have the structure Cu @ CII CB CI 
where CIu, Ca and CI are the invertible C-matrices admitted by the blocks DIU, Du, and 
DI, respectively, it is necessary that we must have CmC;, = E, CIIC; = E and CrC; = E, 
in order that D is potentially real. We now focus our attention on the necessary condition 
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CsC; = E and show that it implies, in turn, theorem 4 as a necessary condition for the 
potential reality of D, specifically in the case of SO(3,l). To this end, we examine the 
most general form of the block C-matrix GI associated with SO(3.1) and check under 
what conditions it obeys the relation CIIC;; = E. 

We recall (table 1 of I) that for every pseudo-real irrep D(j0, c) of SO(3,l)  

(3.3) 

in the canonical Gelfand-Naimark basis. By a rearrangement of the pseudo-red irreps 
contained in DII, we can express DU as a direct sum of the sub-blocks DiI. D;I, . . . , D;, . . . , 
where a typical sub-block matrix is a direct sum of equivalent pseudo-real irreps, i.e. 

(3.4) 

with a specified multiplicity for D(j;,P). However, note that the irreps belonging to 
different sub-blocks DiI and D;; are not equivalent and, as a consequence, the mahix CII is 
also a direct sum of the sub-blocks Ci1, C& . . . , C;, . . ., which are the invertible C-matrices 
associated with D:I, D;I,. . ., Dk, . . ., respectively. Further, the condition C&$ = E 
requires that each sub-block C;, also satisfies Cf1(C;;Y = E. 

If a sub-block D;l consists of a pseudo-real irrep of SO(3,l)  repeating an odd number 
of times, say k ,  the most general C-matrix admitted by YI has the block form 

c 2 = G ~ = - E  

D;, = D($, c’) @ D(jA, c”) @ .  . . 

aiiG a12G a13G ... ] [ W  a12 a13 ...I c: i i . . .  
c; = ~ Z I G  a22G a23G .. . = a21 a22 a23 ... G (3.5) 

where the coefficients ajj are complex numbers setected so as to make C;, invertible. 
As G2 = -E, we observe that Ch(ql)” can be the unit matrix only when complex k- 
dimensional matrix [ajj] satisfies 

[ ~ ~ ; j J [ o r i , ] *  = -E. (3.6) 

But, k is an odd number and, therefore, the k-dimensional matrix (-E) on the right-hand 
side of equation (3.6) has a determinant equal to -1 while the determinant of the product 
matrix [aij][ajj]* is necessarily positive. Thus, when k is an odd number, C; can never 
be chosen such that O;l(C~l)+ = +E. In other words, when C&$ = E, none of the 
multiplicities k of the irreps appearing in the sub-blocks Cjl, CFl, . . . can be an odd number 
and, hence, theorem 4 follows. 

Finally, we wish to point out that the ~C-matrices may also be constructed from the 
relation C = aA’-’G, provided we know the A and G associated with a decomposable 
representation. In this context, we may note that Gelfand er ul (1963) have determined 
the conditions under which a decomposable representation of SO(3, 1) would preserve 
sesquilinear metrics and also all the sesquilinear metrics A associated with such a 
decomposable representation. In an earlier paper (Srinivasa Rao et al 1983), we have 
shown that every irrep of SO(3, 1) preserves a unique bilinear metric. Therefore, it follows 
at once that every decomposable representation of SO(3,l)  also preserves a bilinear metric 
wkich is a direct sum of the bilinear metrics of the constituent irreps. However, it is 
not difficult to see (Narahari 1986) that non-zero off-diagonal blocks can also exist in the 
bilinear metric whenever an irreducible component repeats itself in the given decomposable 
representation of SO(3, 1). In such a case, however, the scalars multiplying the off-diagonal 
blocks in the bilinear metric G have to be chosen so as to make G invertible. 
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Appendix 

We now prove theorem 1. For this purpose, it is sufficient to consider the block Dnr of D. 
Evidently, in any block Dm consisting of a direct sum of only essentially complex irreps, 
the multiplicity of any particular irrep Di must either be equal or unequal to that of its 
complex conjugate D;. Therefore, we prove theorem 1 in two stages. 

Case 1. 
conjugate D;. 

The multiplicity of every irrep D, occurring in DUI is equal to that of its complex 

In this case, it is certainly possible to rearrange the order of occurrence of the irreducible 
components in Dm such that 

DnI = (D1 fB D2) fB (4 fB D4) fB . . . 
where DI is equivalent to D;, D3 is equivalent to D; etc. Now, it is easy to check that DIU 
admits the C-matrix Cm given by 

where C;:DSCn = DI,  C z  D;C, = D3, . . ., and we have 'normalized' Clz. &4, etc, such 
that C I Z C ~ ~  = E, C34C;4 = E,. . .. etc (cf equation (2.2) with a! = 1). Since each of the 
blocks C12, C34, . . . is invertible, Cm is invertible. Recalling that the block C-matrices CI 
and Cn admitted by DI and DII can always be chosen to be invertible, we conclude that 
D = DUI @ DII fB DI admits an invertible C-matrix C = Cm fB Cn @ CI. Moreover, this 
C-matrix evidently satisfies CC* = E. 

Case 2.  DID contains at least one irreducible component, say D,, whose multiplicity k is 
not equal to the multiplicity k' of D:. 

Let us rearrange the order of occurrence of the irreps contained in Dur such that 
DJII = AI fB Az, where AI is given by 

A I  = (DI fB 4 fB . . . fB Dk) fB ( D ~ + I  fB Dk+2 fB . . . €3 D~+P)  

with the first k irreps all equivalent to D, and the remaining k' irreps all equivalent to D; 
and A2 is a direct sum of the rest of the irreps contained in DIU. With such a rearrangement 
of the irreps of DIII, it is evident that any C-matrix CUI admitted by DtIl also has the 
same structure CUI = Cj fB Cz, where CI is the C-matrix admitted by DI and Cz, that 
of Dz. Since we are merely interested in checking whether Cm is invertible or not, we 
can work in any basis which is convenient for this purpose. Therefore, we work in a 
basis in which AI = (D, @ Dz . . . fB 0, )  fB (D: fB D; fB . . : @ D;) where (the same) D, 
repeats k times and (the same) D: repeats k' times. (If M;'DfMi = D,, i = 1.2, .  . . k, 
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andM,-I;'DfMj=D:,i=k+l,k+2 ,... k+k',then M-'A~Mhastheaboveformwhere 
M = (MI~BMz~B...$M~~B.-.~BMK+Y) and M-I = (M;'fBM;'fB. . .fBM&).) Now, writing 
CI in block form as [Cijl. where each block Cti, i j  = 1.2, . . . k + k', is a 'square matrix' 
having the 'dimension' of D, (D, and D: are evidently of the same dimension), and using it 
in the relation CIA' = ATC1, we note that the blocks Cij vanish when i ,  j = 1,2, .  . . , k, 
or i, j = k + 1, k + 2,.  . .', k + k', because these block C-mahices intertwine Dt with D: 
and, hence, must necessarily vanish as D, is essentially complex. Further, since the blocks 
CQ, when i = 1.2,. . . , k, j = k + 1, k+ 2 , .  . , , k f k', or i = k +  1, k + 2, .  . . , k + k', 
j = 1,2,. . . k, intertwine DT and D, with themselves, respectively, it follows, in view of 
the irreducibility of Dt and the Schur lemma, that each such block C, is a scalar multiple 
of the unit matrix E (having the dimension of D,). Therefore, C1 has the block-structure 

c1 = [TI Q O  

with the 'rectangular blocks' P and Q given by P = [p i jE] ,  i = 1,2, . . . , k, j = 
k + l , k + 2  ,..., k + k f a n d Q = [ q i j E ] , i = k + 1 , k + 2  ,..., k+k', j = 1 , 2  ,..., k, 
where pij and qij are arbitrary complex numbers. Let us introduce the (k + k')-dimensional 
(square) matrix 

where 
if i ,  j = 1.2, ..., k 

z . . -  I J -  { pjj i f i = 1 , 2 ,  ..., k j = k + I ,  k + 2,. . . , k +  k' 
if i = k + 1, k +  2, .  . . k + k' j = 1 , 2  ,.... k. 

Then, C I  may be expressed as the direct product C1 = Z @ E. Further, we note that with 
a real permutation matrix S defined by 

0 or i, j = k + 1, k + 2,. . , , k + k' 

q i j  

S(i, j; k, 1) = SjkSjr and S = S-' 
where S(i, j ;  k, 1 )  is the element of the matrix S occurring in the (i j) th row and (kl)th 
column, CI is transformed into E 8 2, i.e. 

CI H C; = S*-'ClS E @ 2. 

Now, a direct evaluation of det(Z) by the Laplace method shows that det(z) = 0 so that 2 
is singular. Hence, C; = E @ 2 = 2 fB 2 fB . . . is not invertible and, hence, C1 is also not 
invertible. Thus, 4 1 1 ,  and hence D, does not possess invertible C-matrices. 

Theorem 1 follows by collecting together the conclusions anived at in cases 1 ancl 2. 
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